Bremen

Massively Parallel Algorithms Organisational Stuff

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

What You (Hopefully) Get Out of This Course

Bremen

- Most importantly: *mind set* for thinking about massively parallel algorithms
- Overview of some *fundamental* massively parallel algorithms
- Techniques for massively parallel visual computing
- Awareness of the *issues* (and solutions) when using massively parallel architectures
- Programming skills in CUDA (the language/compiler/frameworks for programming GPUs)

- This course is **not** for you ...
 - If you don't like algorithms
 - If you are not ready to do a bit of programming in C
 - If you're not open to thinking about computing in completely new ways

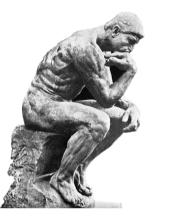
It will be a richly rewarding experience!

Website

- All important information about this course can be found on: <u>http://cgvr.informatik.uni-bremen.de/</u>
 - \rightarrow "Teaching" \rightarrow "Massively Parallel Algorithms"
- Slides
- Assignments
- Text books, online literature
- Please sign up in StudIP!

The Exam

- 1. Either: full oral exam (ca. ¹/₂ hour per student)
- 2. Or: grades from the exercices + mini oral exam ("Fachgespräch")
 - Exercises \rightarrow grade A , mini oral exam \rightarrow grade B
 - 95% of all points of the exercises \rightarrow grade A = 1.0
 - 40% of all points of the exercises \rightarrow grade A = 4.0
 - Overall grade = 0.5 × A + 0.5 × B
 - Uner the condition: grade A ≥ 4.0 && grade B ≥ 4.0 !
 (Allgemeiner Teil der Bachelorprüfungsordnungen der Universität Bremen, 2010)
- Grading criteria of the exercises:
 - 1. Labeling variable and function names
 - 2. "Sufficient" comments in body of functions
 - **3**. Documentation of functions and their parameters (in/out, pre-/post-condition, what does the function do / not do, ...)
 - 4. Functionality (exercise solved? no bugs? ...)



W

Exercises / Assignments

• The two approaches we will pursue in this course:

- Weekly small exercises
 - Due the week after assignment
- Optional: your own programming mini-project in CUDA
 - Due in the last lecture!
 - You give the demo ...
 - Before you begin, you need to present your idea in 5 minutes

The SDK, Needed for Working at Home

- IDE (obviously) of your choice
 - Can be as simple as an ASCII editor and compiler on command line
- CUDA for your platform:

Bremen

https://developer.nvidia.com/cuda-downloads

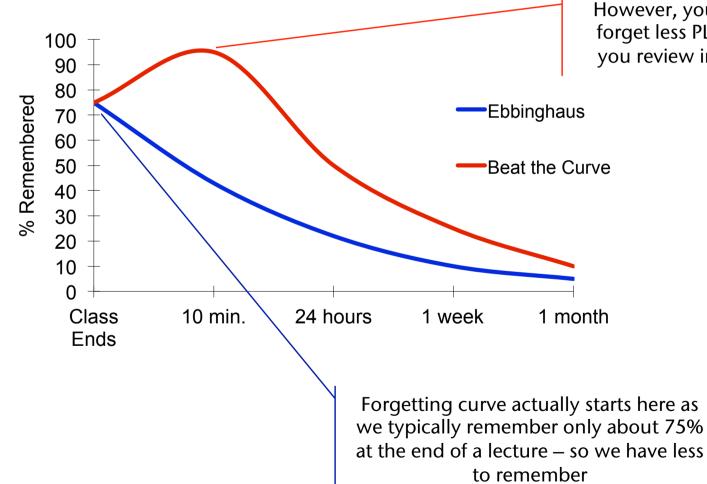
- Works, of course, only with NVidia graphics cards
- If your laptop/desktop does not contain NVidia, use the pool or our lab

I hear and I forget.I see and I remember.I do and I understand.

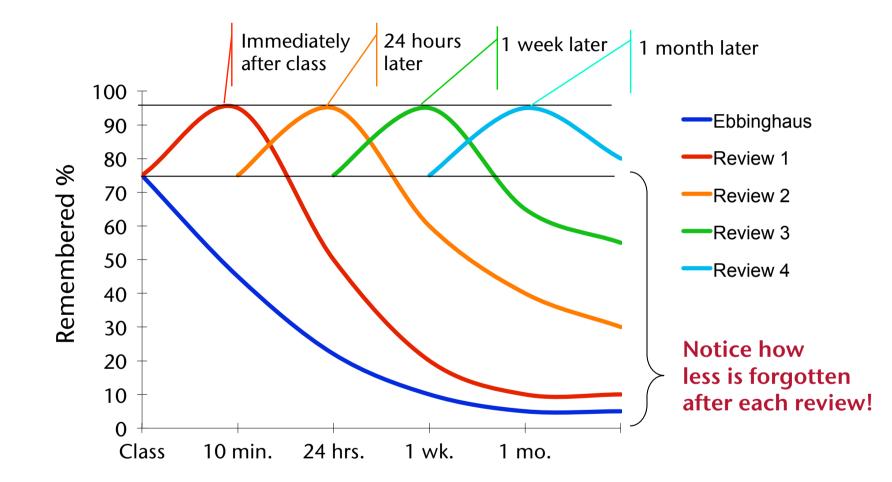
[attributed to Confucius]

The Forgetting Curve (Ebbinghaus)

Bremen



Beating the Forgetting Curve



However, you have the potential to forget less PLUS remember more if you review immediately after class

Overcoming the Curve

Ű

Average Retention Rates

Just listening	5%
Reading	10%
Audio Visual	20%
Demonstration	30%
 Discussion 	50%
Practice by doing	75%
Teach others	90%

What Lies Ahead (Tentative)

